Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.

نویسندگان

  • Daniel S Weller
  • Sathish Ramani
  • Jon-Fredrik Nielsen
  • Jeffrey A Fessler
چکیده

PURPOSE Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods that preserve the undersampled acquired data, which cannot be accomplished using existing techniques. THEORY We derive a weighted MSE criterion appropriate for data-preserving regularized parallel imaging reconstruction and the corresponding weighted Stein's unbiased risk estimate. We describe a Monte Carlo approximation of the weighted Stein's unbiased risk estimate that uses two evaluations of the reconstruction method per candidate parameter value. METHODS We reconstruct images using the denoising sparse images from GRAPPA using the nullspace method (DESIGN) and L1 iterative self-consistent parallel imaging (L1 -SPIRiT). We validate Monte Carlo Stein's unbiased risk estimate against the weighted MSE. We select the regularization parameter using these methods for various noise levels and undersampling factors and compare the results to those using MSE-optimal parameters. RESULTS Our method selects nearly MSE-optimal regularization parameters for both DESIGN and L1 -SPIRiT over a range of noise levels and undersampling factors. CONCLUSION The proposed method automatically provides nearly MSE-optimal choices of regularization parameters for data-preserving nonlinear parallel MRI reconstruction methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Resonance in Medicine 71:1760–1770 (2014) Monte Carlo SURE-Based Parameter Selection for Parallel Magnetic Resonance Imaging Reconstruction

Purpose: Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein’s unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods th...

متن کامل

Evaluation of the performance of parallel-hole collimator for high resolution small animal SPECT: A Monte Carlo study

Introduction: Image quality and accuracy of in vivo activity quantification in SPECT are affected by collimator penetration and scatter components, especially in high energy imaging. These phenomena highly depend on the collimator characteristic and photon energy. The presence of penetrated and scattered photons from collimator in SPECT images degrades spatial resolution, contr...

متن کامل

Time-resolved Optical Imaging with Patterned Light for Pre-clinical Studies

We investigated the performance of the time-gated Diffuse Optical Tomography based on Monte Carlo model with patterned wide-field illumination on a mouse model. The reconstructions outperform classical punctual excitation schemes for similar data sizes. ©2010 Optical Society of America OCIS codes: (170.3010) Image reconstruction techniques; (170.6920) Time-resolved imaging; (170.6960) Tomograph...

متن کامل

Superresolution parallel magnetic resonance imaging: Application to functional and spectroscopic imaging

Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complet...

متن کامل

The Use of Monte Carlo Simulation in Improving Recon- Struction Quality in Single Photon Emission Computed Tomography

This paper describes an efficient method of generating a model-based system matrix using Monte Carlo simulation for incorporation into reconstruction algorithms for pinhole SPECT imaging and reconstructions. The method is able to model the imaging geometry for pinhole collimators and the detector depth of interaction effect accurately and efficiently, and has demonstrated improvement in the qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 71 5  شماره 

صفحات  -

تاریخ انتشار 2014